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1.1: Introduction to Differential Equations
Forms: dydx , d2y

dx2 , dny

dxn  or y′, y′′, y′′′, y(n) or ẏ, ÿ, … or uxy = ∂ 2u
∂x∂y

Differential equation is equation containing a derivative of one or more dependent vars, with respect to one or more independent vars

Solution of a DE is some function y = ϕ(x) that satisfies DE on some interval

General form ODE: F(x, y, y′, … , y(n)) = 0

Normal form ODE: f(x, y, y′, … y(n−1)) = y(n)

1.2: Initial Value Problems

Initial value problem (IVP) is DE with initial condition y(x0) = y0

2.1: Direction Fields, Autonomous Equations and Critical Points
The conditions for unique IVP solution implies if y′ = f(x, y) and fy(x, y) are both continuous on a rectangle, then there is a unique solution
for every single potential point x0, y0 inside the region. If we take every single solution and graph its slope at intervals with an arrow, we get a
direction field.

A first order DE of form dydx = f(y) is called autonomous since it does not depend on independent variable x.

2.2: Separable Equations

First order DE of form dy
dx

= g(x)h(y) is separable. Can be solved easily by integration:

Note that before you integrate you must find all zeroes of h(y), yi, the solution for the zeroes is y(x) = yi. These are called exceptional
solutions. This is because when dividing by h(y), you imply that h(y) will not be zero in order to do the division, so you need to consider the
h(y) = 0 cases separately.

After integrating you will get a constant C. Remembering your exceptional solutions, your constant C may have a value that satisfies these
solutions (i.e you can get the result y(x) = yi via a value of C). Sometimes an exceptional solution is not compatible with any value of C. Then
the exceptional solution is called a singular solution and you need to stick the other solution on piecewise for the y0 = 0 case.

2.3: Linear Equations
A linear first-order DE is of form a1(x) dy

dx
+ a0(x)y = g(x). Note how it satisfies the conditions of both being linear and first-order laid out

above.

Order of a DE = highest derivative it contains
Ordinary differential equation (ODE) contains one independent var
Partial differential equation (PDE) have more than one independent var
Linear DE contains only linear functions of dependent variable, but can contain nonlinear functions of ind. var

Implicit solution is of form G(x, y) = 0, to check, use implicit differentiation to find dydx

If there is some rectangular region in the xy-plane containing the initial condition point x0, y0, and f(x, y) and ∂f
∂y  are both continuous on

the rectangular region, we can say there is an interval where the IVP has a unique solution.
We can't say what the solution is, how large its interval of validity is, or how large its interval of uniquness is, so we can only play it safe
and say that in the neighborhood of x0, y0, we have a unique solution.

f(y) differentiable → f(y) continuous
f ′(y) = ∂f

∂y

If f ′(y) is continuous then the unique IVP solution criteria are filled
Solve via integration, rearrange to 1

f(y)
dy = dx and integrate

Critical point is where y′ = 0, if y = c is a critical point then y(x) = c is a constant solution of y′ = f(y).
On direction field, critical points appear like horizontal lines. Solution curves cannot cross equilibria.
If nearby solutions move towards the equilibrium on both sides, it is stable. If only one side of the equilibrium attracts solutions, it is
semi-stable. If nearby solutions move away, it is unstable.

1
h(y)

dy = g(x)dx

∫
1

h(y)
dy = ∫ g(x) dx
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If g(x) = 0 it is homogenous, if g(x) ≠ 0 it is nonhomogeneous.

Linear n-th order DE: an(x) dny

dxn + an−1(x) dn−1y

dxn−1 + ⋯ + a1(x) dy

dx + a0(x)y = g(x)

Homogenous linear first-order DEs can be solved via separation of parameters. Non-homogenous linear first-order DEs can be solved by:

2.7: Linear Models
Newton's law of cooling: a model for cooling/heating by conduction:

dT

dt
= −k(T − Ts),T (t0) = T0

T (t) is temperature of body at time t, k is a constant, and Ts is temperature of surroundings.

You can derive this yourself, but just as a hint, any exponential problem like this gets solved by

y(t) = y(0)ekt

though you must note for Newton's law of cooling, y(t) refers to the quantity T − Ts and y0 refers to T0 − Ts.

Refer to the 1ZB3 guide for more information.

This formula applies to population growth too. Anything of the form dQ
dt

= kQ can be solved with it. For population growth, there is also a
nonlinear model dP

dt
= rP (1 − P

K
) that halts growth, where K is the long-term limit of the population. To solve this model, separate

parameters. Note that K is a stable critical point.

Euler's method:

dy

dx
= f(x, y) y(x0) = y0

to

yn+1 = yn + hf(xn, yn),xn+1 = xn + h

3.1: Theory of Linear Equations

Recall general equation for n-th order linear DE: an(x) dny

dxn + an−1(x) dn−1y

dxn−1 + ⋯ + a1(x) dy

dx
+ a0(x)y = g(x)

If we give it n initial conditions y(x0) = y0, y′(x0) = y1, … , y(n−1)(x0) = yn−1, it becomes an IVP

Let I = (a, b) be an interval. If every function a1…n(x) and g(x) is continuous on I, and an(x) ≠ 0 for any x in I, then there is a unique solution
y(x) to the IVP defined on all of I.

Differential operator: Dny = d(n)y

dx(n) = y(n).
n-th order linear differential operator: L = an(x)Dn + an−1(x)Dn−1 + ⋯ + a1(x)D + a0(x)

L will commute linearly: L[cy] = cL[y]

Therefore, the most general non-homogenous linear ODE can be written as L[y] = g(x)

Superposition principle theorem: If y1, y2, … yk are solutions of linear ODE L[y] = 0 on interval I, then any linear combination of the solutions
y = c1y1 + c2y2 + ⋯ + ckyk is also a solution of L[y] = 0 on I for constants c.

If a linear combination of functions f1, f2, … fk evaluates to zero for every x ∈ I, it is linearly independent. Otherwise, linearly dependent. If
linearly dependent, at least one of the functions can be expressed via linear combination of others.

A fundamental set of solutions is a linearly independent set made up of solutions on I to a homogenous linear n-th order DE.

A fundamental set of solutions forms a basis for the solution space of the ODE on I. In other words, we can create any solution for the ODE
via a linear combination of the fundamental set. There is always a fundamental set for any ODE L[y] = 0. This set will always be of n
elements, the same as the ODE's order.

The constants of the set c1…n form coordinates in the basis for every solution.

Get DE into standard form dy
dx

+ P(x)y = Q(x)

Multiply both sides by e∫ P(x) dx

Becomes d
dx
(y(x)e∫ P(x) dx) = e∫ P(x) dxf(x)

Integrate both sides then solve for y(x)

Note that unlike the earlier IVP unique-solution theorem, this guarantees existence on a whole interval, not just a neighborhood.
Be careful your leading term does not vanish if your interval contains 0. If it does, make it not.

Important special cases:
Constant multiple of a solution of L[y] = 0 will also be a solution
Trivial solution y(x) = 0 is always a solution

To prove a set is linearly independent, get expressions for the constants c and solve for each. If all evaluate to 0, linearly independent.
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To check if a set of n solutions is a basis for the solution space, check the Wronskian.

W(f1, f2, … , fn) =

The set is linearly independent on I if and only if W(f1, f2, …) ≠ 0 for every x ∈ I. Furthermore, it is guaranteed that there are only two
options: either W  is 0 everywhere on I, or W  is 0 nowhere. So, you only need to check a single point.

Since y(x) = yc(x) + yp(x), where yc is the homogenous solution of the ODE and yp is any non-homogenous solution, we can find a general
solution for any form of the ODE, homogenous or not.

We have k non-homogeneous n-th order linear ODEs of format L[y] = g1…k(x), and k particular solutions on I y1, y2, … yk for each of those
ODEs (i.e y1 is a particular solution for g1). Then by superposition, y(x) = y1(x) + y2(x) + ⋯ + yk(x) is a particular solution for
L[y] = g1(x) + g2(x) + ⋯ + gk(x).

3.3: Linear Equations with Constant Coefficients
First-order linear homogenous DE: L[y] = a

dy

dx
+ by = 0

Assuming r = b
a , solution is y = ce−rx for any constant c.

To solve a higher-order ODE,

3.4: Undetermined Coefficients

You can't always find yp(x) for every g(x), but combinations of several 'good' functions can almost always be found:

How to find yp(x) for a g(x):

Note: undetermined coefficients fails when the potential yp contains terms that are already in yc. This is resonance. To get around this, use
reduction of order.

Initial value problems: in second order DEs, may provide two initial values, y(x0) and y′(x0)

Boundary value problems: same thing but at different points, y(x0) and y(x1)

Use the IVP/BVP constraints once you have y(x) to find the constants

Summary:

∣ f1 f2 … fn

f ′
1 f ′

2 … f ′
n

⋮ ⋮ ⋮ ⋮

f
(n−1)
1 f

(n−1)
2 … f

(n−1)
n ∣Special case: if we have two solutions y1 and y2 that solve the same non-homogenous ODE L[y] = g(x), then y = 2y1 − y2 is a solution to

L[y] = g(x). This is because L[y1] = L[y2] = g(x).

Plug in first order solution y = emx (since c and r were arbitrary and don't necessarily need to be the same as above)
Find values of m that give a solution. You will get a n-th order polynomial, and its roots are solutions.
For second-order:

Distinct real roots:
General solution is y(x) = C1e

m1x + C2e
m2x

Repeated real roots:
General solution is y(x) = C1e

mx + C2xe
mx

Complex roots:
Of form m = α ± βi

Use formula eiθ = cos θ + i sin θ

General solution is C1e
αx cos (βx) + C2e

αx sin (βx)

Constants
Polynomials
Exponentials
Sines/cosines

Derive yp(x) from linear combinations of g(x) and its derivatives.
Solve associated homogenous equation to find complementary solution yc(x)

Make a guess at a potential yp by looking at g(x) and its derivatives
Write potential yp using A,B,C, … as placeholders
Find L[yp] = g(x) by equating coefficients
y(x) = yp + yc

Called 'undetermined coefficients' method

If g(x) has a term that duplicates a term in yc, multiply the trial yp by xn, where n is smallest integer that avoids duplicates.

Does L have constant coefficients?

Last revised 2/6/26, 3:57 PM

3 / 8

af://h2-9
af://h2-10


3.5: Variation of Parameters

2nd order linear ODE in general form: L[y] = y′′ + P(x)y′ + Q(x)y = f(x)

If P  and Q are constant, we can always solve L[y] = 0. If they are not, we may not be able to solve the homogenous eq.

If we have a solution, we will have complementary solution yc(x) = c1y1(x) + c2y2(x)

We will try to find yp by replacing c1, c2 with functions u1(x),u2(x), and letting them vary. To find the values of the two u functions, substitute
yp and its derivatives into L[y]. By doing this and making an extra condition to get rid of some annoying terms (since we're allowed two
conditions to find two functions and we've only used one), we get two linear equations that when solved via linear algebra, are the same as the
Wronskian.

Generally, using Cramer's Rule:

where Wn are the Wronskian of the original yc but with the nth column replaced by the solution vector

[ ]T

3.6: Cauchy-Euler Equations
This is like the constant coefficients one but with polynomial coefficients.

A Cauchy-Euler equation is a linear ODE where each term has a polynomial coefficient of order matching the derivative.

L[y] = anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ ⋯ + a1x

dy

dx
+ a0y = 0

y(x) = xm is a solution on I if and only if anm(m − 1)(m − 2) ⋯ (m − n + 1) + ⋯ + a2m(m − 1) + a1m + a0 = 0. This is the auxiliary equation.

Simplest case is L[y] = ax2 d2y

dx2 + bx
dy

dx + cy = g(x), and the auxiliary equation is am(m − 1) + bm + c = 0. Three cases:

3.8: Linear Models for Initial Value Problems

Gravity: Fg = mg

Spring force: Fs = −kΔd

Dynamical system for spring-mass system forced by gravity: ẍ + ω2x = 0, where ω = √ k
m

 (natural frequency)

Simple harmonic motion: x(t) = c1 cosωt + c2 sinωt.

Or in this form: x(t) = A cos (ωt − ϕ) where A = √c2
1 + c2

2 and ϕ = arctan c2
c1

Frictional force: Ff = βẋ where β is damping constant.

Damped oscillator ODE format: x′′ + 2λx′ + ω2x = 0, no external force = non-homogeneous, external force = homogeneous, external force can
be a function (forcing function)

Three parts of solution: constant, transient (xc(t)), steady state (xp(t))

3.9: Linear Models: Boundary-Value Problems
You need n boundary conditions for a n order DE.

Review: if A is n × n matrix, and Av = λv, then λ is an eigenvalue of A and v is an eigenvector of A. If A has n eigenvalues, we can express any
vector as linear combination of eigenvalues of A.

Try L[y] = 0

Can g(x) be written as a combination of the 'good' functions?
Try L[y] = g(x)

Use method of undetermined coefficients to find yp
y = yc + yp

y1u
′
1 + y2u

′
2 = 0

y
′
1u

′
1 + y

′
2u

′
2 = f(x)

u1(x) = ∫
W1(x)
W(x)

dx

u2(x) = ∫
W2(x)

W(x)
dx

0 0 … f(x)

Distinct real roots
yc(x) = c1x

m1 + c2x
m2

Repeated root
yc(x) = c1x

m + c2x
m logx

Complex conjugate roots (α ± βi)
yc(x) = xα[c1 cos(β logx) + c2 sin(β logx)]
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We take L[y] = λy. If specify initial conditions y(x0) = y0, y′(x0) = y1 then, for any given λ, the eigenvalue problem has a unique solution on
(−∞, ∞).

However, if we specify boundary conditions y(x0) = y0, y(x1) = y1, x0 < x1, then the eigenvalue problem has a non-trivial solution on [x0,x1]

only for specific (but possibly infinitely many) values of λ.

How to solve:

4.1: Laplace Transform
Laplace transform is an integral transform of a function that is a weighted sum. Denoted F(s) or L{f(t)}.

auF(s) = ∫
∞

0
e−stf(t) dt

If f(t) is piecewise continuous on interval [0, ∞) and of exponential order, then L {f(t)} exists for s > c, where c is the bounding exponential
rate.

A Laplace transform is a linear operator. Therefore, it commutes and is compatible with linear combinations.

4.2: Inverse Laplace Transform and Transforms of Derivatives

The inverse Laplace transform undoes a Laplace transform. It is also a linear operator. An inverse Laplace transform is not unique.

f(t) (for t ≥ 0) F(s) = L{f(t)} Region of Convergence (ROC)

1 1
s

Re(s) > 0

t 1
s2 Re(s) > 0

tn (for n = 0, 1, 2, …) n!
sn+1 Re(s) > 0

eat 1
s−a

Re(s) > Re(a)

sin(bt) b
s2+b2 Re(s) > 0

cos(bt) s
s2+b2 Re(s) > 0

sinh(bt) b
s2−b2 Re(s) > Re(b)

cosh(bt) s
s2−b2 Re(s) > Re(b)

teat 1
(s−a)2 Re(s) > Re(a)

tneat n!
(s−a)n+1 Re(s) > Re(a)

eat sin(bt) b
(s−a)2+b2 Re(s) > Re(a)

eat cos(bt) s−a
(s−a)2+b2 Re(s) > Re(a)

U(t − a) (Heaviside step) e−as

s
Re(s) > 0

eb(t−a)U(t − a) (Heaviside step) e−as

s−b Re(s) > 0

(f ∗ g)(t) (G/H(s) is L of each func) G(s) ⋅ H(s) ROC(G) ∩ ROC(H)

δ(t − t0) e−st0 All s

Put in standard form: set L[y] = λy

Evaluate three cases: λ = 0,λ > 0,λ < 0

Evaluate λ = 0 by substituting in
Evaluate λ > 0 by performing λ = −(α2)

Evaluate λ < 0 by performing λ = β2

We do this to ease the eventual squaring of λ since we know we will have a quadratic as our characteristic eq

Apply boundary conditions
Try to find non-trivial solutions

If you find non-trivial solutions, substitute back (−α2 = λ,β2 = λ)

Eigenvalue is the non-trivial solution
Eigenfunctions are y(x) the function you found the non-trivial solution with, with λ subbed back in

There will be another variable n, which represents some constant that creates a set of eigenfunctions

Note that the general solution are NOT the set of eigenfunctions. It is the linear combination of them u(x, t) = ∑∞
n=1 Anun(x, t)

An are coordinates of the solution in the eigenfunction basis, determined by initial conditions.
un(x, t) are the eigenfunctions.

(BELOW IS FROM 13.3)
Sturm-Liouville theory: An = 2

L
∫ L

0 f(x) sin ( nπx
L

) dx

A function is of exponential order if there exists constants c ∈ R,M > 0,T > 0 such that |f(t)| ≤ Mect for all t > T , and c is the bounding
exponential rate.
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Additionally,

Note to use these properties, initial conditions f(0)/f ′(0)/ … are required depending on order of derivative being transformed.

4.3: Translation Theorems
First translation theorem: If F(s) = L {f(t)} exists for s > c and a is any constant, then L{eatf(t)} = F(s − a) for s > a + c. Equivalently, if
f(t) = L−1 {F(s)} then L−1 {F(s − a)} = eatf(t).

F(s − a) is a translation of s by a units.

Heaviside step function U(t − a) is defined as:

U(t) = {

Second translation theorem: L−1 {F(s)e−sa} = f(t − a)U(t − a) = f(t)|t→t−aU(t − a)

Derivative of a Laplace transform: d
ds
F(s) = −L {tf(t)}

n-th derivative of a Laplace transform: dn

dsn
F(s) = (−1)nL{tnf(t)}

4.4: Additional Operational Properties

Laplace functions of piecewise functions can be defined using Heaviside unit step functions. Eg.

Convolution of functions:

(f ∗ g)(t) = ∫
t

0
f(τ)g(t − τ) dτ

Using inverse Laplace transform to solve integrals:

∫
t

0
f(τ) dτ = L

−1{
F(s)
s

}

Volterra integral equation:

Where f(t) is unknown and g,h(t) are given. Solve by taking Laplace transform of both sides.

4.5: Dirac Delta Function
Limit impulse is defined as:

δa(t − t0) =

Dirac delta function is limit of impulses δ(t − t0) = lima→0 δa(t − ta)

Sifting property of Dirac delta function:

f(t0) = ∫
∞

0
f(t)δ(t − t0) dt = ∫

∞

0
f(t)δ(t0 − t) dt = (f ∗ δ)(t0)

13.1: Separable Partial Differential Equations

L{f ′(t)} = sL{f(t)} − f(0)
L{f ′′(t)} = s2

L{f(t)} − sf(0) − f ′(0)

L{f (n)(t)} = s
n
F(s) − s

n−1
f(0) − s

n−2
f

′(0) − ⋯ − f
(n−1)(0)

0, t < a

1, t ≥ a

f(t) =

= f1(t)[1 − U(t − a)] + f2(t)[U(t − a) − U(t − b)] + f3(t)U(t − b)
= f1(t) + [f2(t) − f1(t)]U(t − a) + [f3(t) − f2(t)]U(t − b)

⎧
⎨⎩
f1(t), 0 ≤ t < a,
f2(t), a ≤ t < b,
f3(t), b ≤ t < ∞,

f ∗ g = g ∗ f

f ∗ (g ∗ h) = (f ∗ g) ∗ h

f ∗ (g + h) = f ∗ g + f ∗ h

(cf) ∗ g = f ∗ (cg) = c(f ∗ g)

f(t) = g(t) + ∫
t

0
f(τ)f(t − τ) dτ, t ≥ 0

= g(t) + (f ∗ h)(t), t ≥ 0

⎧⎪⎨⎪⎩0 t < t0 − a
1

2a t0 − a ≤ t < t0 + a

0 t > t0 + a.

δ(t − t0) = {  and ∫ ∞
−∞ δ(t − t0) dt = 1 or ∫ ∞

0 δ(t − t0) dt = 1 if t0 ≥ 0
∞ t = t0

0 t ≠ t0
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General formula for linear second order PDE of two independent variables:

A(x, y)
∂ 2u

∂x2
+ B(x, y)

∂ 2u

∂x∂y
+ C(x, y)

∂ 2u

∂y2
+ D(x, y)

∂u
∂x

+ E(x, y)
∂u
∂y

+ F(x, y)u = G(x, y)

PDEs are hard to solve unless they're separable, second order, and linear.

If the PDE has constant coefficients:

B2 − 4AC

Solving PDEs with dependent variable u(x, t):

Need both boundary and initial conditions to solve constant coefficient separable PDE unless it's elliptic, then you only need boundary
conditions

13.2: Classical PDEs: Boundary-Value Problems

Wave equation: string of length L vibrating, vertical displacement u(x, t). If ends are clamped, boundary conditions are u(0, t) = u(L, t) = 0,
initial conditions are u(x, 0) = f(x)

∂ 2u

∂t2
= a2 ∂ 2u

∂x2

Heat equation: thin rod of cross-sectional area A, length L, thermal conductivity k, initial temperature distribution f(x). Boundary conditions
may include: both ends temperature = 0, heat flux conditions. Initial condition: u(x, 0) = f(x), 0 < x < L

∂u
∂t

= k
∂ 2u

∂x2

Possible heat equation boundary conditions:

Other classical PDEs:

13.3: Heat Equation
I'm ngl this chapter is literally just applying 3.9 to 13.2's heat equation. Everything else (finding An) has been merged into 3.9.

General solution of heat equation:

u(x, t) =
∞

∑
n=1

Ane
−k(n π

L
)2
t sin( nπx

L
)

where

An =
2
L
∫

L

0
f(x) sin( nπx

L
) dx

⎧
⎨⎩

> 0 hyperbolic
= 0 parabolic
< 0 elliptic

Separate variables u(x, t) = X(x)T (t)

Move all X terms and T  terms to separate sides
Set both to separation variable λ
The T (t) side will be an ODE, the X(x) side will be a BVP. Solve both
You will get eigenvalues and associated eigenfunctions from X(x).
Use initial conditions u(x, 0) = f(x) = ∑∞

n=1 AnT (0)Xn(x) and appropriate dot product (integral) to find An

Write down function as infinite eigenfunction series of form u(x, t) = ∑∞
n=1 AnT (t)Xn(x)

End is at constant temperature u0: u(L, t) = u0

End is insulated (no temperature gain/loss): ux(L, t) = 0

End is in bath of constant temperature: ux(L, t) = −h(u(L, t) − um) = hu(L, t) + ux(L, t) = hum, h is heat transfer coefficient, um is constant
temperature.
At the heat distribution's equilibrium, becomes elliptic (from parabolic)

Laplace's equation (for irrotational fluids, heat conduction, other physical stuff)

∂ 2u

∂x2
+

∂ 2u

∂y2
= 0

Poisson's equation (for incompressible fluids, gravity, etc)

∂ 2u

∂x2
+

∂ 2u

∂y2
= f(x, y)

Both are elliptic.
Solve by separation of variables to get two BVPs in x and y.
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Premade solution of heat equation:

u(x, t) =
2L
π

∞

∑
n=1

(−1)n+1

n
e−k( nπ

L
)2
t sin(

nπx

L
)

To actually use any of these general solutions:

13.4: Wave Equation

Same thing as 13.3 but for the wave equation. The BVP's the same, but the IVP is different. There are also two initial conditions (for
displacement and velocity) so we have a more complicated equation.

General solution of wave equation:

u(x, t) =
∞

∑
n=1

(An cos
nπat

L
+ Bn sin

nπat

L
) sin

nπx

L

where the coordinates An,Bn are

An =
2
L
∫

L

0
f(x) sin

nπx

L
dx  and  Bn =

2
nπa

∫
L

0
g(x) sin

nπx

L
dx

Assuming string is of length L, both ends are fixed, initial displacement is u(x, 0) = f(x), initial velocity is ut(x, 0) = g(x). (Note An and Bn are
determined by expansion of f(x) and g(x) respectively).

13.5: Laplace Equation

We are finding the steady state temperature distribution on rectangular plate.

General solution of Laplace Equation:

u(x, y) = A0y +
∞

∑
n=1

An cos(
nπx

a
) sinh(

nπy

a
)

where

A0 =
1
ab
∫

a

0
f(x) dx  and  An =

2

a sinh ( nπb
a )

∫
a

0
f(x) cos( nπx

a
) dx, n = 1, 2, 3, …

Gives temperature at time t and position x in a rod.
Assumes ends are kept at 0, the rod has length L.

To practically use, just truncate n at a certain point once you're accurate enough (usually 10-20).
Higher order terms become negligible fast.
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